Kinetics and mechanism of dissociation of cooperatively bound T4 gene 32 protein-single-stranded nucleic acid complexes. 1. Irreversible dissociation induced by sodium chloride concentration jumps.

نویسنده

  • T M Lohman
چکیده

The dissociation kinetics of cooperatively bound bacteriophage T4 gene 32 protein from a variety of single-stranded homopolynucleotides has been investigated by stopped-flow techniques. Irreversible dissociation of the complexes was induced by rapidly increasing the salt concentration and monitoring the increase in tryptophan fluorescence upon dissociation of the gene 32 protein. The dependence of the apparent dissociation rate constant on initial fractional saturation of the nucleic acid lattice as well as the observation of zero-order kinetics when the lattice is initially fully saturated with protein indicates that dissociation occurs only from the ends of protein clusters and not from doubly contiguous molecules. The data for the entire time course are quantitatively fit by a kinetics model specifying irreversible dissociation of only singly contiguously bound protein [Lohman, T.M. (1983) Biopolymers 22, 1697-1713]. This model is used to extract molecular rate constants for the dissociation of isolated, singly contiguously and doubly contiguously bound protein. It is also shown that the polynucleotide specificity observed for the cooperative binding constant, K omega, and the cooperativity itself are intrinsic properties of the dissociation rate of the various complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the thermodynamics and kinetics of the cooperative binding of bacteriophage T4-coded gene 32 (helix destabilizing) protein to nucleic acid lattices.

In this paper we summarize a series of thermodynamic, and preliminary kinetic, studies on the molecular details and specificity of interaction of phage T4-coded gene 32-protein (GP32) with nucleic acid lattices. It is shown that the binding of GP32 to short (l = 2--8 residues) oligonucleotides is essentially independent of base composition and sugar-type, as well as of salt concentration. In co...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Effect of Helium-Neon Laser and Sodium Hypochlorite on Calf Thymus Double-Stranded Deoxyribonucleic Acid Molecule: An in Vitro Experimental Study

Introduction: Low-energy helium-neon (He-Ne) laser beam lightis used in combination with sodium hypochlorite (Na2HOCl3) for clinical purposes. Regarding this, the present study aimed to investigate the effect of He-Ne laser (632.8 nm) and sodium hypochlorite on the calf thymus double-stranded deoxyribonucleic acid (ctdsDNA) molecule.  Materials and Methods: For the purpose of the study, ctdsDNA...

متن کامل

The binding of T4 gene 32 protein to MS2 virus RNA and transfer RNA.

Fluorescence titrations, absorption spectroscopy and stopped-flow techniques were used to study the interaction of T4 coded 32-protein (P 32) with MS2 RNA and total tRNA from E. coli under different ionic conditions. It is shown that the amount of MS2 RNA and tRNA secondary structure melted by P 32 varies markedly and reversibly within a range of ionic conditions under which the binding constan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 23 20  شماره 

صفحات  -

تاریخ انتشار 1984